Abstract

The article proposes a control method for autonomous unmanned aerial vehicles (UAVs) group of a fixed-wing type intended to both implement and support flight information with predetermined relative distances between the vehicles. The suggested approach provides any selected geometric formation shape construction and further preservation when UAVs enter a straight-line trajectory described by a given course with arbitrary initial positions of UAVs in the horizontal plane. The proposed method feature is "autopilot—UAV" system’s nonlinear structure consideration, manifesting itself in both the autopilot input commands restrictions existence as well as nonholonomic UAV dynamics. In addition, there is an unlimited multi-UAV system scalability available due to decentralization. We take into account the need to maintain a minimum flight speed of not less than the stall speed and the final speed of the formation equal to the cruising speed of this type of UAV. The nonlinear group control laws synthesized using Lyapunov’s direct method are based on the decentralized consensus interaction topology, initially developed for linear agents, which implies each vehicle to interact with its neighboring vehicles only. Global asymptotic stability for the current control laws has been proved. As a result, proposed control laws determine a non-uniform path-following vector field for each vehicle in the whole UAV group flight space (currently two-dimensional space). The suggested field vector norm at a certain space point is the airspeed command for the vehicle at that point while the vector direction is the course angle command. The proposed approach effectiveness has been successfully tested in the MATLAB/Simulink while using realistic nonlinear six degree-of-freedom (DOF) 12-states fixed-wing UAV models. High fidelity simulation results confirm the suggested approach effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.