Abstract

The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call