Abstract

Abstract Multi-robots navigation in dynamic environment is a promising topic in intelligent robotics with motion planning being one of the fundamental problems. However, in practicel, multi-robots motion planning is challenging with traditional centralized approach since computational demand makes it less practical and robust for the motion planning of a large number of robots. In this paper, a decentralized distribute robots motion planning framework (DDRMPF) is discussed which addresses the specific issue. DDRMPF directly maps raw sensor data to steering command to generate optimal paths for each constituent robot. Unlike centralized method which needs a complete observation along with a center agent which processes heavy data collected from all the robots, DDRMPF allows each agent to generate an optimal local path needing only partial observation, thus rendering motion planning involving large numbers of robots more practical and robust. DDRMPF trains the policy for each robot in the complex and dynamic environment simultaneously based on the reinforcement algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.