Abstract

Functional encryption (FE) is a new paradigm of public key encryption that can control the exposed information of plaintexts by supporting computation on encrypted data. In this paper, we propose efficient multi-client FE (MCFE) schemes that compute the set intersection of ciphertexts generated by two clients. First, we propose an MCFE scheme that calculates the set intersection cardinality (MCFE-SIC) and prove its static security under dynamic assumptions. Next, we extend our MCFE-SIC scheme to an MCFE scheme for set intersection (MCFE-SI) and prove its static security under dynamic assumptions. The decryption algorithm of our MCFE-SI scheme is more efficient than the existing MCFE-SI scheme because it requires fewer pairing operations to calculate the intersection of two clients. Finally, we propose a decentralized MCFE scheme for set intersection (DMCFE-SI) that decentralizes the generation of function keys. Our MCFE schemes can be effectively applied to a privacy-preserving contact tracing system to prevent the spread of recent infectious diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call