Abstract

We present a novel planning framework for navigation in dynamic, multi-agent environments with no explicit communication among agents, such as pedestrian scenes. Inspired by the collaborative nature of human navigation, our approach treats the problem as a coordination game, in which players coordinate to avoid each other as they move towards their destinations.We explicitly encode the concept of coordination into the agents’ decision making process through a novel inference mechanism about future joint strategies of avoidance. We represent joint strategies as equivalence classes of topological trajectory patterns using the formalism of braids. This topological representation naturally generalizes to any number of agents and provides the advantage of adaptability to different environments, in contrast to the majority of existing approaches. At every round, the agents simultaneously decide on their next action that contributes collisionfree progress towards their destination but also towards a global joint strategy that appears to be in compliance with all agents’ preferences, as inferred from their past behaviors. This policy leads to a smooth and rapid uncertainty decrease regarding the emerging joint strategy that is promising for real world scenarios. Simulation results highlight the importance of reasoning about joint strategies and demonstrate the efficacy of our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call