Abstract

Multi-agent reinforcement learning (MARL) has long been a significant research topic in both machine learning and control systems. Recent development of (single-agent) deep reinforcement learning has created a resurgence of interest in developing new MARL algorithms, especially those founded on theoretical analysis. In this paper, we review recent advances on a sub-area of this topic: decentralized MARL with networked agents. In this scenario, multiple agents perform sequential decision-making in a common environment, and without the coordination of any central controller, while being allowed to exchange information with their neighbors over a communication network. Such a setting finds broad applications in the control and operation of robots, unmanned vehicles, mobile sensor networks, and the smart grid. This review covers several of our research endeavors in this direction, as well as progress made by other researchers along the line. We hope that this review promotes additional research efforts in this exciting yet challenging area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.