Abstract

Challenges in motion planning for multiple quadrotors in complex environments lie in overall flight efficiency and the avoidance of obstacles, deadlock, and collisions among themselves. In this paper, we present a gradient-free trajectory generation method for multiple quadrotors in dynamic obstacle-dense environments with the consideration of time consumption. A model predictive control (MPC)-based approach for each quadrotor is proposed to achieve distributed and asynchronous cooperative motion planning. First, the motion primitives of each quadrotor are formulated as the boundary state constrained primitives (BSCPs) which are constructed with jerk limited trajectory (JLT) generation method, a boundary value problem (BVP) solver, to obtain time-optimal trajectories. They are then approximated with a neural network (NN), pre-trained using this solver to reduce the computational burden. The NN is used for fast evaluation with the guidance of a navigation function during optimization to guarantee flight safety without deadlock. Finally, the reference trajectories are generated using the same BVP solver. Our simulation and experimental results demonstrate the superior performance of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.