Abstract

The problem under study in this article is the active control of sound transmission and radiation of a panel under a periodic excitation. The control strategy investigated uses independent control loops between an individual polyvinylidene fluoride (PVDF) sensor and an individual lead zirconate titanate (PZT) actuator. The specific approach employed here uses the concept of virtual impedance. The aim is to determine for each frequency the optimal impedance between each PVDF sensor and the corresponding PZT actuator in order to reduce the sound power radiated by the plate. Theoretical predictions are compared to measurements of the sound radiated and transmission loss of a panel mounted with eight PZT-PVDF units. Reductions of up to 20 dB of the acoustic power can be achieved around mechanical resonances of the system, while the control strategy has little effect for off-resonance excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.