Abstract

In this paper, a simple but efficient framework is proposed to achieve finite-time decentralized formation tracking of multiple autonomous vehicles with the introduction of decentralized sliding mode estimators. First, we propose and study both first-order and second-order decentralized sliding mode estimators. In particular, we show that the proposed first-order decentralized sliding mode estimator can guarantee accurate position estimation in finite time and the proposed second-order decentralized sliding mode estimator can guarantee accurate position and velocity estimation in finite time. Then the decentralized sliding mode estimators are employed to achieve decentralized formation tracking of multiple autonomous vehicles. In particular, it is shown that formation tracking can be achieved for systems with both single-integrator kinematics and double-integrator dynamics in finite time. Because accurate estimation can be achieved in finite time by using the decentralized sliding mode estimators, many formation tracking/flying scenarios can be easily decoupled into two subtasks, that is, decentralized sliding mode estimation and vehicle desired state tracking, without imposing a stringent condition on the information flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.