Abstract

This paper is concerned with the decentralized event-triggered H∞ control for switched systems subject to network communication delay and exogenous disturbance. Depending on different physical properties, the system state is divided into multiple communication channels and decentralized sensors are employed to collect signals on these channels. Furthermore, decentralized event-triggering mechanisms (DETMs) with a switching structure are proposed to determine whether the sampled data needs to be transmitted. In particular, an improved data buffer is presented which can guarantee more timely utilization of the sampled data. Then, with the proposed DETMs and data buffer, a time-delay closed-loop switched system is developed. After that, sufficient conditions are presented to guarantee the H∞ performance of the closed-loop switched system by utilizing the average dwell time and piecewise Lyapunov functional method. Since the event-triggered instants and the switching instants may stagger with each other, the influence of their coupling on the H∞ performance analysis is systematically discussed. Subsequently, sufficient conditions for designing the event-triggered state feedback controller gains are provided. Finally, numerical simulations are given to verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.