Abstract

This paper studies the problem of resilient dynamic output-feedback control schemes for continuous-time networked control systems (NCSs). A decentralized hybrid strategy is utilized while network imperfections, external disturbances, and noise are considered. Moreover, during data transmission, a practical denial-of-service (DoS) jamming attack, which periodically disturbs the network channels, is considered. To preserve the network resources, a decentralized event-triggered mechanism is employed to transmit only the sampled signals that are required. It is assumed that outputs and control inputs of each subsystem are transmitted to the corresponding decentralized controllers and actuators, respectively, over the different individual channels based on independent triggering mechanisms. At first, the NCS is modeled as a decentralized hybrid system with exogenous disturbance and noise. Then, sufficient conditions that guarantee the [Formula: see text]-stability of the NCS in the presence of external disturbances and noise, which is resilient to periodic DoS attacks, are provided in terms of the linear matrix inequalities. Finally, sufficient conditions are derived to deal with the time-varying delays. It has been demonstrated that the proposed technique can be effectively applied to a well-known continuous stirred tank reactor (CSTR) as a benchmark example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.