Abstract
Cybersickness and control-loop instabilities are two main concerns in Tactile Cyber-Physical Systems (TCPS). TCPS applications demand stringent bounds on end-to-end latencies to avoid their occurrences. Traditional best-effort networks cannot guarantee packet latencies in the presence of external traffic. However, emerging deterministic networks such as IEEE 802.1 Time-Sensitive Networking (TSN) can isolate time-critical flows from external traffic using IEEE 802.1Qbv Time-Aware Shaper (TAS) to guarantee bounded end-to-end packet latencies. In this work, we develop eDDSCH-TSN, a decentralized dynamic scheduling protocol to configure non-overlapping gate slots in TAS-enabled TSN switches to support TCPS flows. eDDSCH-TSN supports plug-and-play operation of compatible TCPS terminals with guaranteed minimal end-to-end packet latencies. Compared to the state-of-the-art, eDDSCH-TSN provides three orders lower end-to-end packet latencies for TCPS flows in mid-size networks with 10 hops between source and destination terminals. Further, we also present PYTSN, an open-source discrete-event TSN simulator that we use for evaluating eDDSCH-TSN. In particular, we use PYTSN to show the isolation of TCPS flows from external traffic and plug-and-play operation of TCPS terminals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.