Abstract

This paper proposes a new decentralized data-driven load restoration (DDLR) scheme for transmission and distribution (TD) systems with high penetration of wind power. Robust DDLR models are constructed in order to handle uncertainties and ensure the feasibility of decentralized schemes. The Wasserstein metric is used to describe the ambiguity sets of probability distributions in order to build the complete DDLR model and realize computationally tractable formulation. A data-driven model-nested analytical target cascading (DATC) algorithm is developed to obtain the final load restoration result by iteratively solving small-scale mathematical models. The proposed DDLR scheme provides load restoration results with adjustable robustness, and performance efficiency is independent from the amount of data. The DDLR scheme makes full use of the available data while respecting information privacy requirements of independent operated systems, and ensures the feasibility of a decentralized load restoration strategy even in the worst-case condition. The effectiveness of the proposed method is validated using a small-scale TD system and a large-scale system with the IEEE 118-bus TS and thirty IEEE-33 DSs, showing high computational efficiency and superior restoration performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.