Abstract

In this letter, we introduce a decentralized, nonlinear, discontinuous, and computationally simple control law for large scale multiagent navigation systems. The control is based on extending Gauss's principle of least constraint with a dynamic incorporation of inequality constraints, actuator saturation, and actuator dynamics. With no individual path planner, each agent executes its motion and generates its control actions by reacting solely to the evolution of its constrained dynamics, which is equivalent to solving a linear matrix equation with a dimension up to around 20 without iteration at each time instant. Numerical experiments are conducted on hundreds of two-dimensional (2-D) double integrators subjected to path and collision constraints, demonstrating the promise of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.