Abstract

A decentralized adaptive control design procedure for large-scale uncertain systems is developed using Single Hidden Layer neural networks. The subsystems are assumed to be feedback linearizable and non-affine in the control, and their interconnections bounded linearly by the tracking error norms. Single Hidden Layer neural networks are introduced to approximate the feedback linearization error signal online from available measurements. A robust adaptive signal is required in the analysis to shield the feedback linearizing control law from the interconnection effects. The tracking errors are shown to be uniformly ultimately bounded, and all other signals uniformly bounded. The proposed adaptive algorithm is implemented in simulation to stabilize an interconnected double inverted pendulum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call