Abstract

This letter focuses on the design of decentralized feedback control gains that aims at optimizing individual costs in a multi-agent synchronization problem. As reported in the literature, the optimal control design for synchronization of agents using local information is NP-hard. Consequently, we relax the problem and use the notion of satisfaction equilibrium from game theory to ensure that each individual cost is guaranteed to be lower than a given threshold. Our main results provide conditions in the form of linear matrix inequalities (LMIs) to check if a given set of control gains are in satisfaction equilibrium, i.e., all individual costs are upper-bounded by the imposed threshold. Moreover, we provide an algorithm in order to synthesize gains that are in satisfaction equilibrium. Finally, we illustrate this algorithm with numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.