Abstract

This paper presents a new decentralized bounded input bounded output (BIBO) stabilization problem for a class of interconnected time-delay systems and its application to power systems with energy storages. We first provide conditions for the derivation of an ellipsoid that bounds a given linear functions of the state vector. Then, a design procedure is proposed to synthesize decentralized static output feedback controllers. The designed controllers guarantee that a given linear functions of the state vector, starting from any initial condition, converges exponentially to its prescribed zones. To deal with the time-delay issue, we use an improved weighted integral inequality recently reported in the literature to derive less conservative exponential stability conditions. Then, our presented control approach is applied to an interconnected power system integrated energy storages with multiple time delays. We synthesis decentralized static output feedback load frequency controllers to guarantee that the system frequency and interchanged power converge to their prescribed zones exponentially from any initial conditions. The controller’s construction is simpler and easier for implementation due to only the local output measurements are required. In order to systematically obtain the controller gains, an effective procedure using linear matrix inequality based stabilisation criteria, which can be solved by various computation tools, is provided. Finally, the effectiveness of the proposed control scheme is verified by comprehensive simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call