Abstract

Anonymous credentials provide a powerful tool for making assertions about identity while maintaining privacy. However, a limitation of today's anonymous credential systems is the need for a trusted credential issuer — which is both a single point of failure and a target for compromise. Furthermore, the need for such a trusted issuer can make it challenging to deploy credential systems in practice, particularly in the ad hoc network setting (e.g., anonymous peer-to-peer networks) where no single party can be trusted with this responsibility. In this work we propose a novel anonymous credential scheme that eliminates the need for a trusted credential issuer. Our approach builds on recent results in the area of electronic cash that, given a public append-only ledger, do not need a trusted credential issuer. Furthermore, given a distributed public ledger, as in, e.g., Bitcoin, our system requires no credential issuer at all and hence is decentralized. Using such a public ledger and standard cryptographic primitives, we propose and provide a proof of security for a basic anonymous credential system that allows users to make flexible identity assertions with strong privacy guarantees without relying on trusted parties. Finally, we discuss a number of practical applications for our techniques, including resource management in ad hoc networks and prevention of Sybil attacks. We implement our scheme and measure its efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.