Abstract

In this article, the decentralized adaptive secure control problem for cyber-physical systems (CPSs) against deception attacks is investigated. The CPSs are formed as a type of nonlinear interconnected strict-feedback systems with uncertain time-varying parameters. The attack affects the information transmission between sensor and actuator in a multiplicative manner. A novel decentralized adaptive backstepping secure control strategy is established by exploiting a particular kind of Nussbaum functions and a flat-zone Lyapunov function analysis approach. It is shown that all of closed-loop signals remain globally bounded, and each output signal eventually converges into a small neighborhood of the origin. Simulation results on an illustrative example are provided to display the effectiveness of the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call