Abstract

The problem of routing virtual circuits according to dynamical probabilities in virtual-circuit packet-switched networks is considered. Queueing network models are introduced and performance measures are defined. A decentralized asynchronous adaptive routing methodology based on learning automata theory is presented. Every node in the network has a stochastic learning automaton as a router for every destination node. The routing probabilities that are assigned to the network paths are updated asynchronously on the basis of current network conditions. A learning algorithm suitable for routing is used. Some initial simulation experiments, for a simple network, show convergence to optimal routing. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call