Abstract

In this paper, we propose a decentralized adaptive robust controller for trajectory tracking of robot manipulators. In each local controller, a disturbance observer (DOB) is introduced to compensate for the low-passed coupled uncertainties, and an adaptive sliding mode control term is employed to handle the fast-changing components of the uncertainties beyond the pass-band of the DOB. In contrast to most of the local controllers using DOB for robot manipulators that are based on linear control theory, in this study, by some special nonlinear damping terms, the boundedness of the signals of the overall nonlinear system is first ensured. This paves the way to analyze how the DOB and adaptive sliding mode control play in a cooperative way in each local subsystem to achieve an excellent control performance. Simulation results are provided to support the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.