Abstract

The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen (2005)) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the nonsmoothness and nonconvexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression subproblems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning‐free estimators that do not require the availability of high‐level “black box” optimization routines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.