Abstract

This study proposes a decentralised robust fuzzy control strategy for islanded operation of an AC microgrid with voltage source inverters. The objective is to design a robust controller for regulating the load voltage and sharing power among distributed generators (DGs) in the presence of uncertainties in the system and non-linear loads. The AC microgrid consists of parallel DGs connected to a main AC bus. A Takagi-Sugeno fuzzy approach is developed in this article to achieve stability and desired performance in dealing with non-linearities in the islanded microgrid and H ∞ criterion is used to obtain a robust control strategy in presence of uncertainties raised by unmodelled and high frequency dynamics. Therefore, a non-convex condition in H ∞ optimisation problem is converted to a convex linear matrix inequality (LMI) condition and is solved by MATLAB LMI toolbox. In order to develop a decentralized system, P–f and Q–V droop controllers are used to specify set-points for local inverter controllers in each DG. The effectiveness of the proposed control strategy in presence of constant power load and DG accidental outage is validated by the simulation of a microgrid test system in MATLAB SimPowerSystems toolbox. Comparison with cascaded proportional integral controller shows advantages of robust T-S controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.