Abstract

In this paper, we consider the problem of decentralised binary detection in sensor networks characterised by non-constant observation Signal-to-Noise Ratios (SNRs) at the sensors. In general, SNRs at the sensors could have a generic non-constant distribution. In order to analyse the performance of these decentralised detection schemes, we introduce the concept of sensor SNR profile, and we consider four possible profiles (linear, quadratic, cubic and hyperbolic) as representative of a large number of realistic scenarios. Furthermore, we show how the impact of communication noise in the links between the sensors and the Access Point (AP) depends on the sensor SNR profile (i.e. the spatial distribution of the observation noise). More precisely, different sensor SNR profiles are compared under two alternative assumptions: (i) common maximum sensor SNR or (ii) common average sensor SNR. Finally, we propose an asymptotic (for a large number of sensors) performance analysis, deriving a simple expression for the limiting probability of decision error. We validate our theoretical analysis with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.