Abstract

Patients suffering from end-stage organ failure requiring organ transplantation face donor organ shortage and adverse effect of chronic immunosuppression. Recent progress in the field of organ bioengineering based on decellularized organ scaffolds and patient-derived cells holds great promise to address these issues. Perfusion-decellularization is the most consistent method to obtain decellularized whole-organ scaffolds to serve as a platform for organ bioengineering. Important advances have occurred in organ bioengineering using decellularized scaffolds in small animal models. However, the function exhibited by bioengineered organs has been rudimentary. Pluripotent stem cells seem to hold promise as the ideal regenerative cells to be used with this approach but the techniques to effectively and reliably manipulate their fate are still to be discovered. Finally, this technology needs to be scaled up to human size to be of clinical relevance. The search for alternatives to allogeneic organ transplantation continues. Important milestones have been achieved in organ bioengineering with the use of decellularized scaffolds. However, many challenges remain on the way to producing an autologous, fully functional organ that can be transplanted similar to a donor organ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.