Abstract

Hydrogels derived from decellularized extracellular matrix (ECM) have been widely used as a bioactive matrix for facilitating functional bone tissue regeneration. However, its poor mechanical strength and fast degradation restricts the extensive use for clinical application. Herein, we present a crosslinked decellularized bone ECM (DBM) and fatty acid modified chitosan (oleoyl chitosan, OC) based biohybrid hydrogel (DBM/OC) for delivering human amnion-derived stem cells (HAMSCs) for bone regeneration. DBM/OC hydrogel were benchmarked against collagen-I/OC (Col-I/OC) based hydrogel in terms of their morphological characteristics, rheological analysis, and biological performances. DBM/OC hydrogel with its endogenous growth factors recapitulates the nanofibrillar 3D tissue microenvironment with improved mechanical strength and also exhibited antimicrobial potential along with superior proliferation/differentiation ability. HAMSCs encapsulation potential of DBM/OC hydrogel was established by well spread cytoskeleton morphology post 14 days of cultivation. Further, ex-vivo chick chorioallantoic membrane (CAM) assay revealed excellent neovascularization potential of DBM/OC hydrogel. Subcutaneously implanted DBM/OC hydrogel did not trigger any severe immune response or infection in the host after 21 days. Also, DBM/OC hydrogels and HAMSCs encapsulated DBM/OC hydrogels were implanted at the tibial defect in a rabbit model to assess the bone regeneration ability. Quantitative micro-CT and histomorphological analysis demonstrated that HAMSCs encapsulated DBM/OC hydrogel can support more mature mineralized bone formation at the defect area compared to DBM/OC hydrogel or SHAM. These findings manifested the efficacy of DBM/OC hydrogel as a functional cell-delivery vehicle and osteoinductive template to accelerate bone regeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.