Abstract
Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2mScm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.