Abstract
Surgical resection of the esophagus requires sacrificing a long portion of it. Its replacement by the demanding gastric pull-up or colonic interposition techniques may be avoided by using short biologic scaffolds composed of decellularized matrix (DM). The aim of this study was to prepare, characterize, and assess the in vivo remodeling of DM and its clinical impact in a preclinical model. A dynamic chemical and enzymatic decellularization protocol of porcine esophagus was set up and optimized. The resulting DM was mechanically and biologically characterized by DNA quantification, histology, and histomorphometry techniques. Then, in vitro and in vivo tests were performed, such as DM recellularization with human or porcine adipose-derived stem cells, or porcine stromal vascular fraction, and maturation in rat omentum. Finally, the DM, matured or not, was implanted as a 5-cm-long esophagus substitute in an esophagectomized pig model. The developed protocol for esophageal DM fulfilled previously established criteria of decellularization and resulted in a scaffold that maintained important biologic components and an ultrastructure consistent with a basement membrane complex. In vivo implantation was compatible with life without major clinical complications. The DM's scaffold in vitro characteristics and in vivo implantation showed a pattern of constructive remodeling mimicking major native esophageal characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.