Abstract
A droplet obliquely impacting a bath surface of the same fluid can traverse along the interface while slowing at an exponential rate. The droplet rests on a thin film of air, deforms the bath surface creating a dimple and travels along the surface similarly to a wave pulse. Viscous coupling of the droplet and bath surfaces through the air film leads to viscous drag on the bath and perturbs the wave motion of the otherwise free surface. Even though the Reynolds numbers are greater than unity ($\mathit{Re}\,O(10{-}100)$), we show that the droplet’s deceleration is only due to viscous coupling through the air gap. The rate of deceleration is found to increase linearly with droplet diameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.