Abstract

Double-stranded DNA oligomers containing 23 alternating adenine-thymine base pairs are studied at different hydration levels by femtosecond two-dimensional (2D) infrared spectrosopy. Coupled NH stretching modes of the A-T pairs and OH stretching excitations of the water shell are discerned in the 2D spectra. Limited changes of NH stretching frequencies and line shapes with increasing hydration suggest spectral dynamics governed by DNA rather than water fluctuations. In contrast, OH stretching excitations of the water shell around fully hydrated DNA undergo spectral diffusion on a ~500 fs time scale. The center line slopes of the 2D spectra of hydrated DNA demonstrate a slower decay of the frequency-time correlation function (TCF) than that in neat water, as is evident from a comparison with 2D spectra of neat H(2)O and theoretical TCFs. We attribute this behavior to reduced structural fluctuations of the water shell and a reduced rate of resonant OH stretching energy transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call