Abstract

Recent studies of M31, the Galactic Centre (GC), and galaxy clusters have made tentative detections of an X-ray line at similar to 3.5 keV that could be produced by decaying dark matter. We use high-resolution simulations of the Aquarius project to predict the likely amplitude of the X-ray decay flux observed in the GC relative to that observed in M31, and also of the GC relative to other parts of the Milky Way halo and to dwarf spheroidal galaxies. We show that the reported detections from M31 and the GC are compatible with each other, and with upper limits arising from high galactic latitude observations, and imply a decay time tau similar to 10(28) s. We argue that this interpretation can be tested with deep observations of dwarf spheroidal galaxies: in 95 per cent of our mock observations, a 1.3 Ms pointed observation of Draco with XMM-Newton will enable us to discover or rule out at the 3 sigma level an X-ray feature from dark matter decay at 3.5 keV, for decay times tau < 0.8 x 10(28) s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.