Abstract
This paper is concerned with the decay structure for linear symmetric hyperbolic systems with relaxation. When the relaxation matrix is symmetric, the dissipative structure of the systems is completely characterized by the Kawashima-Shizuta stability condition formulated in \cite{UKS84,SK85}, and we obtain the asymptotic stability result together with the explicit time-decay rate under that stability condition. However, some physical models which satisfy the stability condition have non-symmetric relaxation term (cf.~the Timoshenko system and the Euler-Maxwell system). Moreover, it had been already known that the dissipative structure of such systems is weaker than the standard type and is of the regularity-loss type (cf.~\cite{D,IHK08,IK08,USK,UK}). Therefore our purpose of this paper is to formulate a new structural condition which include the Kawashima-Shizuta condition, and to analyze the weak dissipative structure for general systems with non-symmetric relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.