Abstract

The β-decay properties of nuclei with N = 126, which are believed to act as progenitors in the rapid neutron capture (r-) process path forming the third peak (A ∼ 195) in the observed r-abundance element distribution, are considered critical for understanding the production of heavy elements such as gold and platinum at astrophysical sites. We have constructed the KEK Isotope Separation System (KISS), which consists of a gas cell based laser ion source (atomic number selection) and an isotope separation on-line (ISOL) (mass number selection), to produce pure low-energy beams of neutron-rich isotopes around N = 126 and to study their β-decay properties, which are also of interest for astrophysics. The isotopes of interest will be produced by multi-nucleon transfer reactions in heavy ion collisions (e.g. 136Xe projectile on 198Pt target). KISS will allow us to study unknown isotopes produced in weak reaction channels under low background conditions. We successfully extracted the stable 56Fe beam from KISS at the last commissioning on-line experiment with the extraction efficiency of 0.25% and beam purity of more than 98%. We can access the nuclei with N = 126 and measure their half-lives using the KISS in the case of the extraction efficiency of 0.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call