Abstract

We review structure data obtained by decay spectroscopy of neutron-rich nuclei of mass close to 100. Emphasis is put on the contribution of experiments at IGISOL in the nineties. They confirmed the earlier postulated shape coexistence in the fast shape-transition region between N = 58 (spherical ground states and low collectivity) and N = 60 (strong axial deformation). A detailed spectroscopic study of the A = 99 chain established the upper-Z limit of the N = 56 shell closure region with 99Nb, owing to striking similarities with 97Y. A consequence of the N = 56 closure is that the s1/2 odd-neutron becomes the ground state of the most neutron-rich N = 57 isotones, starting with 99Mo, instead of the degenerated d5/2 and g7/2 subshells familiar in the tin region. Consequences on the change of spin on astrophysical r-process calculations are briefly discussed. Finally, we say a few words about neutron-rich rhodium and palladium isotopes near the neutron midshell where regular and intruder states coexist very close to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.