Abstract
We consider the Rayleigh beam equation and the Euler–Bernoulli beam equation with pointwise feedback shear force and bending moment at the position ξ in a bounded domain (0,π) with certain boundary conditions. The energy decay rate in both cases is investigated. In the case of the Rayleigh beam, we show that the decay rate is exponential if and only if ξ/π is a rational number with coprime factorization ξ/π=p/q, where q is odd. Moreover, for any other location of the actuator we give explicit polynomial decay estimates valid for regular initial data. In the case of the Euler–Bernoulli beam, even for a nonhomogeneous material, exponential decay of the energy is proved, independently of the position of the actuator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematics of Control, Signals, and Systems (MCSS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.