Abstract

For a positive recurrent continuous-time Markov chain on a countable state space, we compare the access time to equilibrium to the hitting time of a particular state. For monotone processes, the exponential rates are ranked. When the process starts far from equilibrium, a cutoff phenomenon occurs at the same instant, in the sense that both the access time to equilibrium and the hitting time of a fixed state are equivalent to the expectation of the latter. In the case of Markov chains on trees, that expectation can be computed explicitly. The results are illustrated on the M/M/∞ queue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.