Abstract
<abstract><p>In this work, we deal with a one-dimensional Cauchy problem in Timoshenko system with thermal effect and damping term. The heat conduction is given by the theory of Lord-Shulman. We prove that the dissipation induced by the coupling of the Timoshenko system with the heat conduction of Lord-Shulman's theory alone is strong enough to stabilize the system, but with slow decay rate. To show our result, we transform our system into a first order system and, applying the energy method in the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using those pointwise estimates, we prove the decay estimates of the solution and show that those decay estimates are very slow.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.