Abstract

The first excited level of 96Mo was investigated in a high-statistics experiment using the 95Mo(n, γγ) cold neutron capture reaction. The measurements used the high cold neutron flux from the research reactor at Institut Laue-Langevin and employed the highly-efficient EXILL array to detect γ-ray coincidences. The recorded statistics allow identification of decay branches with only a small relative intensity including the E3 decay. With the knowledge of the newly measured branching ratio and the known transition probability, the lifetime of the level was determined and, subsequently, the strength of the other decay branches of the octupole phonon were calculated. The extracted electromagnetic decay strengths are compared to the systematics of the stable even–even molybdenum isotopes and values calculated in a Skyrme-force based quasiparticle random phase approximation and in a cluster approach. Additionally, the decay branch to the low-lying quadrupole isovector level was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call