Abstract

The ionization and ionic dissociation of the superexcited state of N2O are studied by using electron energy loss spectroscopy and positive ion time-of-flight mass spectroscopy at different momentum transfers; that is, 0 and 0.23 a.u. (atomic unit). The transitions at 13.8 eV and 14.0 eV are reassigned as 3pπ(000) and 3pσ(000) converging to A2Σ+, respectively. The competition between the main decay pathways of superexcited states at different momentum transfers is revealed. It is found that 3dσ converging to C2Σ+ mainly decays into N2O+ while 4dσ can decay into both N2O+ and NO+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.