Abstract

The weathering of rocks controls the shape of the Earth’s surface and affects their suitability as building stones. Frost weathering and crystallization of soluble salts are considered to be important factors in rock weathering. Although the crystallization of salts and ice presents obvious chemical differences, both of them produce crystallization pressure. Few studies seem to have been done on the effects of the combined action of repeated freezing–thawing and salt crystallization on the rocks. This paper studies the weathering of rocks under the combined effect of freezing–thawing cycle and salt crystallization cycle. The results show that, with the increase of freeze–thaw cycles, the samples soaked with MgSO4 solution tend to turn red and the surface particles fall off more seriously. The mass of the sandstone is increased at the beginning of the freeze–thaw cycle and then decreases. Roughness, residual moisture, and MgSO4 crystal affect the thermal conductivity. Samples soaked with 40% MgSO4 solution lost the most mass and have the lowest thermal conductivity. There are two main factors that cause damage to sandstone: (1) crystallization pressure of salt and (2) frost heave action of ice. Crystallization pressure of salt and frost heave action of ice can reduce the cohesive force between particles, making the particles fall off, which is the most important factor of sandstone damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.