Abstract
Based on a modified Darcy law, the decay of potential vortex and diffusion of temperature in a generalized Oldroyd-B fluid with fractional derivatives through a porous medium is studied. Exact solutions of the velocity and temperature fields are obtained in terms of the generalized Mittag-Leffler function by using the Hankel transform and discrete Laplace transform of the sequential fractional derivatives. One of the solutions is the sum of the Newtonian solutions and the non-Newtonian contributions. As limiting cases of the present solutions, the corresponding solutions of the fractional Maxwell fluid and classical Maxwell fluids are given. The influences of the fractional parameters, material parameters, and the porous space on the decay of the vortex are interpreted by graphical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.