Abstract

We report new Spitzer 24 � m photometry of 76 main-sequence A-type stars. We combine these results with previously reportedSpitzer24 � m data and 24 and 25 � m photometry from theInfrared Space Observatoryand the InfraredAstronomySatellite.Theresultisasampleof266starswithmasscloseto2.5M� ,alldetectedtoatleastthe � 7 � level relative to their photospheric emission. We culled ages for the entire sample from the literature and/or estimated them using the H-R diagram and isochrones; they range from 5 to 850 Myr. We identified excess thermal emission using an internally derived K � 24 (or 25) � m photospheric color and then compared all stars in the sample tothatcolor.Becausewehaveexcludedstarswithstrongemissionlinesorextendedemission(associatedwithnearby interstellar gas), these excesses are likely to be generated by debris disks. Younger stars in the sample exhibit excess thermal emissionmore frequently andwithhigher fractional excess thandothe olderstars. However,asmanyas 50% oftheyoungerstarsdonotshowexcessemission.Thedeclineinthemagnitudeofexcessemission,forthosestarsthat show it, has a roughly t0/time dependence, with t0 � 150 Myr. If anything, stars in binary systems (including Algoltype stars) and k Boo stars show less excess emission than the other members of the sample. Our results indicate that (1) there is substantial variety among debris disks, including that a significant number of stars emerge from the protoplanetary stage of evolution with little remaining disk in the 10‐60 AU region and (2) in addition, it is likely that much of the dust we detect is generated episodically by collisions of large planetesimals during the planet accretion endgame,andthatindividualeventsoftendominatetheradiometricpropertiesofadebrissystem.Thislatterbehavior agrees generally withwhat weknowabouttheevolution of thesolar system, andalsowiththeoretical models ofplanetary system formation. Subject headingg circumstellar matter — infrared: stars — planetary systems: formation Online material: machine-readable table

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call