Abstract

We investigate numerically the decay of isotropic, rotating, magnetohydrodynamic (MHD) and rotating MHD flows in a periodic box. The Reynolds number Re defined by the box size and the initial velocity is 100, at which the flows are in a weakly nonlinear regime, i.e. not laminar but far away from the fully turbulent state. The decay of isotropic flow has two stages, the first stage for the development of small scales and the second stage for the viscous dissipation. In the rapidly rotating flow, fast rotation induces the inertial wave and causes the large-scale structure to inhibit the development of the first stage and retard the flow decay. In the MHD flow, the imposed field also causes the large-scale structure but facilitates the flow decay in the first stage because of the energy conversion from flow to magnetic field. The magnetic Reynolds number Rm is important for the dynamics of the MHD flow; namely, a high Rm induces the Alfven wave but a low Rm can not. In the rotating MHD flow, slower rotation tends to convert more kinetic energy to magnetic energy. The orientation between the rotational and magnetic axes is important for the dynamics of the rotating MHD flow; namely, the energy conversion is more efficient and a stronger wave is induced when the two axes are not parallel than when they are parallel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.