Abstract
Cryogenically trapped Fe(V) nitride complexes with cyclam-based ligands were found to decay by bimolecular reactions, forming exclusively Fe(II) compounds. Characterization of educts and products by Mössbauer spectroscopy, mass spectrometry, and spectroscopy-oriented DFT calculations showed that the reaction mechanism is reductive nitride coupling and release of dinitrogen (2 Fe(V)≡N→Fe(II)-N=N-Fe(II)→2 Fe(II)+N2). The reaction pathways, representing an "inverse" of the Haber-Bosch reaction, were computationally explored in detail, also to judge the feasibility of yielding catalytically competent Fe(V)(N). Implications for the photolytic cleavage of Fe(III) azides used to generate high-valent Fe nitrides are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.