Abstract

The non-perturbative instabilities of hot Kaluza-Klein spacetime are investigated. In addition to the known instability of hot space (the nucleation of 4D black holes) and the known instability of KK space (the nucleation of bubbles of nothing by quantum tunneling), we find two new instabilities: the nucleation of 5D black holes, and the nucleation of bubbles of nothing by thermal fluctuation. These four instabilities are controlled by two Euclidean instantons, with each instanton doing double duty via two inequivalent analytic continuations; thermodynamic instabilities of one are shown to be related to mechanical instabilities of the other. I also construct bubbles of nothing that are formed by a hybrid process involving both thermal fluctuation and quantum tunneling. There is an exact high-temperature/low-temperature duality that relates the nucleation of black holes to the nucleation of bubbles of nothing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.