Abstract
We propose and study a certain discrete time counterpart of the classical Feynman--Kac semigroup with a confining potential in countable infinite spaces. For a class of long range Markov chains which satisfy the direct step property we prove sharp estimates for functions which are (sub-, super-)harmonic in infinite sets with respect to the discrete Feynman--Kac operators. These results are compared with respective estimates for the case of a nearest-neighbour random walk which evolves on a graph of finite geometry. We also discuss applications to the decay rates of solutions to equations involving graph Laplacians and to eigenfunctions of the discrete Feynman--Kac operators. We include such examples as non-local discrete Schrodinger operators based on fractional powers of the nearest-neighbour Laplacians and related quasi-relativistic operators. Finally, we analyse various classes of Markov chains which enjoy the direct step property and illustrate the obtained results by examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Latin American Journal of Probability and Mathematical Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.