Abstract

We investigate the decay of initial correlations in a spin system where each spin relaxes independently by an intramolecular mechanism. The equation of motion for the spin density matrix is assumed to be the Redfield equation, which is of the form of a quantum mechanical master equation. Our analysis of this problem is based on the techniques of Shuler, Oppenheim, and coworkers, who have studied the decay of correlations in systems which can be described by classical stochastic master equations. We find that the off-diagonal elements of the reduced spin density matrices approach their equilibrium values faster than the diagonal elements. The Ursell functions, which are a measure of the correlations in the system, decay to their zero equilibrium values faster than the spin density matrix except for the furthest off-diagonal elements. Far off-diagonal matrix elements of the spin density matrix approach equilibrium at the same rate as the Ursell functions, which is the important difference between the quantum mechanical model studied here and the classical models studied earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.