Abstract

We consider a one-dimensional lattice system of unbounded, real-valued spins with arbitrary strong, quadratic, finite-range interaction. We show the equivalence of correlations of the grand canonical (gce) and the canonical ensemble (ce). As a corollary we obtain that the correlations of the ce decay exponentially plus a volume correction term. Then, we use the decay of correlation to verify a conjecture that the infinite-volume Gibbs measure of the ce is unique on a one-dimensional lattice. For the equivalence of correlations, we modify a method that was recently used by the authors to show the equivalence of the ce and the gce on the level of thermodynamic functions. In this article we also show that the equivalence of the ce and the gce holds on the level of observables. One should be able to extend the methods and results to graphs with bounded degree as long as the gce has a sufficient strong decay of correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.