Abstract
Anode surface temperature after current zero has a great impact on the interruption capacity of a vacuum interrupter. The objective of this paper is to theoretically investigate the relation between breakdown voltages and anode surface temperature after current zero. A heat conduction model was adopted to describe the temperature development of the anode, taking account of phase transition and evaporation. The breakdown voltages in certain metal vapor densities were obtained by the Particle-in-Cell/Monte Carlo collision (PIC-MCC) method. Finally, the Paschen curve for copper vapor was obtained using the PIC–MCC method and verified by the theoretical model. Moreover, the minimum breakdown voltage, 30 V, was obtained at a density of $1.3\times 10^{22}/\text{m}^{3}$ with a gap of 10 mm, which corresponded to a surface temperature of 1983 K. In order to ensure a successful interruption, anode surface temperature should not be higher than 1983 K at current zero, and the melting time should be kept as short as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.