Abstract

We show that the Banach space M of regular σ-additive finite Borel complex-valued measures on a non-discrete locally compact Hausdorff topological Abelian group is the direct sum of two linear closed subspaces MD and MND, where MD is the set of measures μ ∈ M whose Fourier transform vanishes at infinity and MND is the set of measures μ ∈ M such that ν ∉ MD for any ν ∈ M {0} absolutely continuous with respect to the variation |μ|. For any corresponding decomposition μ = μD + μND (μD ∈ MD and μND ∈ MND) there exist a Borel set A = A(μ) such that μD is the restriction of μ to A, therefore the measures μD and μND are singular with respect to each other. The measures μD and μND are real if μ is real and positive if μ is positive. In the case of singular continuous measures we have a refinement of Jordan's decomposition theorem. We provide series of examples of different behaviour of convolutions of measures from MD and MND.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call